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a b s t r a c t

The motion of a vertical disc along a curve under the influence of gravity is investigated. On the assumption
of regular rolling without slip and separation of contact points, the problem of plotting the curve of most
rapid motion of the disc centre from the origin of coordinates to an arbitrary fixed point of the lower
half-plane is solved. As usual, the velocity at the initial instant of time is zero, and at the final instant
of time it is not fixed. In explicit parametric form, the classical brachistochrone for contact points of the
disc is plotted and investigated. The response time, trajectory and kinematic and dynamic characteristics
of motion are calculated analytically. Previously unknown qualitative properties of regular rolling are
established. In particular, it is shown that the disc centre moves along a cycloid connecting specified
points. The envelopes of the boundary points of the disc, produced as its centre moves along the cycloid,
are brachistochrones. The feasibility of mechanical coupling of the disc and the curve by reaction forces
at the contact point (the normal pressure and dry friction) is investigated.

© 2009 Elsevier Ltd. All rights reserved.

1. Formulation of the problem

The rolling of a dynamically symmetrical, possibly inhomogeneous, vertical disc plane along a fixed curve is considered (Fig. 1). The
shape of the curve is assumed to be fairly smooth and is selected on the basis of additional conditions. Motion is considered to occur
without slip and separation. These requirements can be satisfied with appropriate properties of contact (the roughness of the interacting
parts), the curvature of the line (the magnitudes of the radii of curvature) and the conditions of motion (the phase variables). The reaction
forces (the normal pressure and sliding friction) are determined from the equations of motion (see below). The process of regular rolling
can also be realized artificially by additional normal constraints, not preventing motion. Rolling friction, governed by deformation, is not
considered in order to keep the investigation simple.

Owing to the specific nature of the problem, a more convenient left-hand system of coordinates OXY is traditionally introduced. The Y
axis is assumed to be directed vertically downwards along the directrix of the force of gravity. By analogy with the classical brachistochrone
problem for a point mass (see Refs 1–3, etc.), the problem of plotting the curve of most rapid regular rolling of a disc from a fixed state of
rest to a required position at an arbitrary velocity is formulated. The points defining the positions of the disc centre C at the initial instant
(t = 0) and the final instant (t = tf) of time are considered to be specified. Without loss of generality, the origin of coordinates O, i.e., X = Y = 0,

is adopted as the initial point and the point D with coordinates X = xf
c , Y = yf

c is adopted as the final point. Obviously, to be specific it is
essential that the ordinate yf

c > 0, and the abscissa xf
c > 0, i.e., trajectories of rolling to the right are considered (see Fig. 1).

The variational problem is as follows: it is required to construct the rolling curve AB, i.e., the function y(x, A, B), such that, under the
action of the forces and the moments of forces of gravity, the disc centre C moves from the initial point O to the final point D in the shortest
time tf; the initial velocity of the disc centre is zero, and the final velocity is not fixed. The curve must be determined in explicit form y(x,
A, B) or implicit form K(x, y, A, B) = 0, and here the coordinates of the points A and B must also be calculated. Usually, the problem can be
solved successfully in parametric form x(�, A, B), y(�, A, B), where � is a parameter of the curve, �0 ≤ � ≤ �f; the unknown quantities �0 and
�f are determined from the final conditions.

As is well known (see Refs 1–3, etc.), in the classical brachistochrone problem for a point mass sliding without friction (J. Bernoulli,
1696), the solution is a cycloid (Fig. 2), the equation of which in parametric form is as follows:
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Fig. 1.

(1.1)

According to relations (1.1), it is first necessary to find the unknown final value of the parameter �f(�f), and then, from first elementary
equations for y(�f) = yf or x(�f) = xf, the constant Rf is calculated as a function of yf, �f or xf, �f, i.e., Rf(xf, yf). The dependence of �f on �f is
specified analytically by the elementary curve �(�) according to relations (1.1) (see Fig. 3). For the specified value � = �f, the quantity � = �f
is found numerically or graphically.

Note that the limiting quantity �f = 2�, corresponding to yf = 0, is also achievable. The required time of motion in this case is finite and
is calculated from the formula

where

Fig. 2.
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Fig. 3.

Note, in particular, that, as a convenient parameter for setting the curve, we can take its length s (s′2 = x′2 + y′2, where a prime denotes
a derivative with respect to the parameter �), 0 ≤ s ≤ sf. In this case, the equation of the curve is specified in so-called natural form4 (see
below). After determining the parameters �f and Rf from relations (1.1), the variable � is found extremely simply as a function of the natural
parameter s – the length of the arc of the curve

(1.2)

By means of expressions (1.2), the required dependences of x, y and s on the time t, 0 ≤ t ≤ tf, are determined. The minimum value of the
functional of the variational problem is calculated in an elementary way by means of the formula

(1.3)

Here, the values of the parameters �f and Rf are determined using to formula (1.1).
Note that relations (1.1)–(1.3) fully describe the solution of the classical brachistochrone problem – a smooth curve of the most rapid

fall of a point mass from a state of rest O at t = 0 to a required position D (without fixing the velocity) at t = tf.
By means of formulae (1.1) and (1.2), expressions are obtained for the velocities and accelerations

(1.4)

(1.5)
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where

From expressions (1.4) it follows that ẋ > 0 when 0 < t ≤ tf, i.e., the abscissa x increases monotonically; the velocity ẋ is a maximum
when � = �, i.e., on the lower part of the cycloid. According to expressions (1.5), |ẍ| = g, i.e., the magnitude of the acceleration is a maximum
at � = �

2 , 3�
2 ; ẍ = 0 when � = 0, �, 2�; the behaviour of ÿ is the reverse. It is interesting that the velocity profile ẏ along the ordinate axis

y repeats the acceleration profile ẍ along the abscissa axis x. The velocity modulus � of the point as it slides along the cycloid increases
when 0 < � < �, and then decreases when � < � < 2� according to expression (1.5) for s̈ = �̇. The vector components of the acceleration (ẍ ÿ)
(1.5) have the form of projections of the vector of the acceleration due to gravity (0, g) onto the rotating axes with an angle of rotation �,
0 ≤ � ≤ 2�; its modulus w = g.

By means of standard formulae4 based on relations (1.4) and (1.5), the polar coordinates and radial and transverse components of the
velocity and acceleration are calculated, and also the tangential and normal components of the acceleration of a point moving along the
cycloid under gravity.

The model of sliding of the point mass is considered to be approximately applicable to the problem of the falling of a body of “small”
size (by comparison with the minimum radius of curvature). Such an assumption requires us to substantiate the similarity of the solutions
for these models. As it slides, the body must be supported at certain points; variable constraints are imposed upon it. By comparison with
the translational motion of a point, its motion becomes more complex (translational-rotational). The equations of motion and the relations
for the brachistochrone are made far more complicated. Note that the radius of curvature of the cycloid tends to zero as � → 0, 2�, while
the curvature coefficient becomes unbounded (see below).

More serious difficulties arise when plotting the brachistochrone for a rolling body, in particular for a disc. Full systematic investigations
and the results of the solution of the classical brachistochrone problem for a disc are not given in the literature.

2. The equations of the regular rolling of a disc

Consider a geometrically smooth curve y(x) passing through the points A and B (see Fig. 1). It is assumed that a disc of radius a can
roll in a regular manner along the curve, i.e., without slip and separation.5,6 If the curvature � of the curve on certain sections is negative
(downward convexity), which occurs for the brachistochrone, then its absolute value does not exceed a−1 (see below). At the contact point
x, y, first-order tangency occurs.

The position of the disc centre C (and its centre of mass) has the coordinates xc, yc
6

(2.1)

The angle ˛ is measured clockwise from the X axis (see Fig. 1). If the function x = x(t) is specified and is continuous in time t > 0, then the
variable y = y(x(t)) will also be continuous for |�| < �/2, which is also assumed. The variables xc, yc, however, are defined in terms of y′(x),
which will require continuous differentiability of y(x). The kinematic characteristics of the disc centre C are calculated simply by formal
differentiation of expressions (2.1) for xc, yc with respect to t.6 For the velocity components we will obtain

(2.2)

As noted above, relations (2.2) impose constraints on the quantity �: � > −a−1. When �↓ − a−1, the relationship between ẋc, ẏc and ẋ
degenerates, which leads to essential singularity in the equations of motion.

We will determine the full angular velocity of rotation of the disc for regular rolling along the curve.6 The angle of complete rotation �
is governed by the path length s and the rotation of the tangent, i.e., by the angle �:

(2.3)

Here, �0 is a certain constant, for example �0 = �(x0), where x0 corresponds to xc = 0. The angular velocity � is also found by formal
differentiation of expressions (2.3) taking into account relations (2.1)

(2.4)

From relations (2.2) and (2.4) it follows that we have continuity of the characteristics ẋc , ẏc and �̇ with respect to t provided there
is continuity of the curvature function �, i.e. y′′. This condition imposes higher continuity requirements on the class of functions y(x)
considered in the variational problem compared with the classical brachistochrone (for a point mass). Calculation of the accelerations ẍc ,
üc and �̈ will require continuity (or differentiability in order to satisfy the conditions of the existence and uniquely theorem) of the function
�′, i.e., the function y′′′.

The variable x will be taken as the generalized coordinate for describing the regular rolling of the disc in a gravity field. The remaining
geometric and kinematic characteristics of the system must be expressed in terms of x and ẋ, enabling us to determine the kinetic energy
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T(x, ẋ) and the potential energy V(x). We have the expressions6

(2.5)

where 	 is the generalized inertia characteristic of the rolling disc, m* is the reduced mass and I is the central moment of inertia. Note that
representation (2.5) for the kinetic energy T degenerates when �↓ − a−1. This singularity imposes the requirement �(x) > −a−1.

The equation of motion in the form of the Lagrange’s equation has the form6

(2.6)

For Eq. (2.6) the Cauchy problem is still not specified. First it is necessary to find the function y(x) from the class of fairly high continuity
so that the disk centre C at zero initial velocity moves from point O to point D in the minimum possible time tf.

Note that for the curve y(x) the initial point A(x(0) = x0, y(x0) = y0) and the final point B(x(tf) = xf, y(xf) = yf) are unknown and are determined
by taking expressions (2.1) into account. Thus, the variational problem is required: the boundary conditions are specified for the displaced
curve xc(t), yc(t) (2.1) along which the disc centre C is moving. The brachistochrone – the rolling curve x(t), y(t) with unknown endpoints
– is plotted. It is not clear in advance which point of the edge of the disc is in contact with the line of rolling.

3. Formulation of the variational problem for the rolling curve

In the standard manner, we will apply the formula for the integral of the total energy E of the conservative system described by Eq.
(2.6). Using expressions (2.5), we obtain the governing relation between x and t of differential form

(3.1)

From relations (3.1) we have the required integral relation between the variables t and x (the second integral)

(3.2)

Note, however, that in relations (3.1) and (3.2) the parameters E, x0.f and y0.f and, finally, the shape of the y(x) curve are unknown. It is
necessary to formulate the closed variational problem that enables us to determine the required quantities uniquely. From the above we
have the relations

(3.3)

(3.4)

From the second equation of system (3.4) it follows that the integral E = 0. The coordinate y0 = a(1 + y′2
0)

−1/2
, where the derivative

y′
0 = y′(x0) is also unknown and to be determined. The integrand � does not depend on variable x. It is linear in y′, which leads to degeneracy

of the Euler–Poisson equation:

(3.5)

The stricter Legendre-type condition is not satisfied. It can be established directly by differentiation that third-order equation (3.5)
occurs for y(x) rather than a fourth-order equation, as in the general case. This general solution will depend on three integration constants.
It should satisfy four boundary conditions containing six unknowns, which makes their determination difficult. These conditions must be
predetermined on the basis of additional assumptions which are validated in Section 4; namely, the curve y(x) should emanate from the
point x0 = −a, y0 = 0; this requirement leads to a singularity: y′ → −∞ when x↓ − a. As a result, boundary conditions (3.4) for Eq. (3.5) are
reduced to the form

(3.6)
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where yf = y(xf), and the quantities sin ˛ and cos ˛ are defined in terms of y′ and s′ according to the fifth and sixth relations of system (2.1).
It is assumed that the solution of Eq. (3.5) can be presented in the form

(3.7)

where xf and yf are constants to be determined from the last two conditions of (3.6). This procedure is extremely lengthy and provides
only the formal possibility of solving variational problem (3.4). Note the extraordinary complexity of equation (3.6). Its integration and
the satisfaction of the boundary conditions according to relations (3.6) and (3.7) are extremely difficult. All this means that the effective
plotting of the brachistochrone requires appropriate transformation of the variational problem (3.3), (3.4), i.e., reduction to more convenient
variables (see below).

4. Modification of the variational problem of the fastest motion of the disc centre

In order to simplify the solution of the brachistochrone problem for a disc, we will use the structural properties of the function ˚ (3.2),
(3.3) and boundary conditions (3.4). These properties stem from the expressions for the kinetic and potential energy, taking into account
relations (2.1), (2.2), (2.4) and (2.5)

(4.1)

The curve yc(xc) determines the trajectory of motion of the disc centre C. The variational problem takes the traditional (modified) form for
plotting the classical brachistochrone

(4.2)

According to Section 1, the solution of problem (4.2) is defined by a cycloid1–3

(4.3)

The family of cycloids (xc, yc) for all (xf
c, yf

c), i.e., Rc > 0, 0 ≤ � ≤ 2�, forms a field of extremals (see Fig. 2). For values of �f
c and Rc corre-

sponding to relations (4.3), the curve yc(xc) defines the optimum solution of variational problem (4.2) in terms of the coordinates of the
disc centre xc, y(xc).

Thus, let the required optimum cycloid be plotted (see formulae (4.3) and Fig. 2). The response time tf corresponding to the specified

point (xf
c, yf

c) is calculated by means of a formula similar to formula (1.3), with the aid of expression (4.2) for 
f, i.e.,

(4.4)

Theorem. The solution of the classical brachistochrone problem for a disc, on the assumption of regular rolling without separation and
slip, is defined by the modified curve y(x) according to formulae (2.1) and (4.3) and has the form (Fig. 4)

(4.5)

From relations (4.5) we have the following values, adopted intuitively in Section 3:

The brachistochrone y(x) is represented in Fig. 4 by the continuous bold curve. Its coordinates for the specified value of the parameter
�, i.e., the time t, are defined as the sum of the coordinates of the radius vector of the point of the cycloid (xc, yc) and a vector a (unfixed)
orthogonal to the cycloid and rotated by an angle �c (see Fig. 4). In other words, the brachistochrone is the envelope of a family of circles,
the centres of which move along the cycloid.
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Fig. 4.

Note that the modified brachistochrone for the disc can be artificially realized when it is “rolling” along the curve x̃(�), ỹ(�) connecting
the points Ã and B̃ (see Fig. 4, the dashed curve above and to the right of yc(xc)). With this motion, the disc rotates in the reverse direction
(anticlockwise), and the constraint or normal pressure of the disc on the curve ỹ(x̃) is created by additional devices.

Using expressions (4.5) for x(�) and y(�), taking into account relations (4.3) for xc(�) and yc(�), we can obtain the required kinematic
characteristics of the brachistochrone for the disc. We have the expressions

(4.6)

from which it follows that the quantities y′ and s′ are unbounded, and (1 + a�) → +0 when � → +0.

5. Analysis of the conditions for regular rolling of a disc along a brachistochrone

We will examine the equations of motion of the centre of mass of a disc, rolling along a brachistochrone, in the form of Newton’s equa-
tions. We will differentiate expressions (2.2) with respect to t for ẋc, ẏc; by Newton’s second law, we obtain equations for the coordinates
of the centre of mass of the disc (Fig. 1)

(5.1)

It must be assumed that the function y(x) is known according to the penultimate equation of system (4.5), i.e., the quantities �, �′,
y′, y′′ and sin �, cos � as functions of the argument x are known. The dependence of the variable x(t) is determined explicitly either by
integration of Cauchy’s problem for Eq. (2.6) with the conditions x(0) = −a, ẋ(0) = 0, or by using expressions (4.3) to (4.5). Note that the
second derivative ẍ in Eq. (5.1) is eliminated using expression (2.6).

The unknown forces of normal pressure N and sliding friction F (Fig. 1) are determined uniquely from the linear equations (5.1)

(5.2)

taking into account the expressions for ẍc and ÿc (5.1). The force of rolling friction3 is ignored. The condition of regular rolling consists of
checking the inequalities

(5.3)

where kf is the coefficient of dry friction.3,5,6

Analysis of expressions (5.2) indicates that, at the initial instant of time t = 0, the normal pressure N = 0, because ẍc(0) = cos �(−a) = 0,
and its value then begins to increase, and, when ˛ ≈ 0 is reached, N ≈ mg is obtained. The force of sliding friction F = 0 at the initial stage of
the motion. Thus, at the start of motion, strict inequalities (5.3) are not satisfied, and additional artificial approaches are required to realize
regular rolling of the disc. For example, a model of “absolutely rough” contact surfaces can be created.3,7–11

Strict formulation of the brachistochrone problem under the additional condition of regular rolling must be considered taking into
account inequalities (5.3), which makes its solution considerably more difficult. An “approximate” solution with a fairly high value of the
coefficient of dry friction kf will be the part of the brachistochrone A*B that satisfies conditions (5.3) (see Fig. 4). Here, the disc can be brought
to a state of translational-rotational motion, corresponding to point A* of the ideal theoretical brachistochrone (4.5). The corresponding
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instant of time t* > 0 can be determined from the equation |F| = kfN, i.e.,

(5.4)

Calculation of t* requires mathematical modelling with a specified value of the friction coefficient kf, the radius of the disc a, the ratio m/m*

and the parameters xf
c , yf

c .
Note that all linear quantities of the problem can be normalized on a > 0, i.e., in the initial system it can be assumed that a = 1. Moreover,

as unit time t we can take the quantity �−1 =
√

a
g (or �−1 =

(
a
g

)(
m∗
m

)1/2
), i.e., we can introduce the argument � = �t and assume that g = 1

(or � = 1) in the equations.
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